Abstract

The purpose of this paper is to present the most important theoretical and experimental discoveries that have been made in the area of dusty plasma physics. We describe the physics and observations of the well celebrated dust acoustic wave (DAW) and the dust ion‐acoustic wave (DIAW) in dusty plasmas with weakly coupled dust grains, as well as the dust Coulomb crystal and dust lattice oscillations (DLOs) in dusty plasmas with strongly coupled dust grains. In dusty plasmas, the dust charge fluctuation is a dynamical variable, which provides a novel collisionless damping of the DA and DIA waves. The latter and the DLOs are excited by external sources, which are here discussed. Besides the Debye‐Hückel short‐range repulsive force between like charged dust grains, there are novel attractive forces (e.g. due to dipole‐dipole dust particle interactions, overlapping Debye spheres, ion focusing and ion wakefields, dipole magnetic moments etc.), which provide unique possibilities for attracting charged dust particles of similar polarity. The dust particle attraction is responsible for the formation of dust Coulomb crystals in laboratory dusty plasmas, as well as for the formation of planets and large astrophysical bodies in the Milky Way galaxy and in interstellar media. Furthermore, the nonlinear DAW, DIAW, and DLOs also appear in the form of solitary and shock waves, the physics and observations of which are briefly discussed. Finally, we discuss possible applications of dust‐in‐plasmas and dusty plasmas in laboratory and space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.