Abstract

Since semiconductor bridge (SCB) igniter has been invented, it is commonly considered as a plasma generator. However, the plasma ignition mechanism may be affected by the hotspot ignition temperature of the primary explosives that is lower than the melting point of SCB in the igniter. In an effort to investigate the non-plasma ignition performance of SCB igniter, a one-dimensional model was established for temperature distribution analysis under constant current and capacitor discharge excitation. The simulation results featured the progress of heat transfer and the energy level required by non-plasma ignition of SCB was estimated. Furthermore, sensitivity experiments were carried out to test simulation results and to obtain the firing current range of SCB igniter with lead styphnate (LTNR). Experiment results indicated that safety conditions are 1.953 A constant current input lasting 1 ms under constant current excitation and 7.072 V voltage input using 47 µF storage capacitor under capacitor discharge excitation. All-firing conditions of non-plasma ignition are 2.035 A constant current input lasting 1 ms under constant current excitation and 7.647 V voltage input using 47 µF storage capacitor under capacitor discharge excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call