Abstract
We measured the thermodynamical and transport properties of aluminum-gold mixtures in the warm dense matter regime and for various concentrations. We compare these measurements with quantum molecular dynamics (QMD) simulations. We find that the calculated pressures and resistivities of both the mixtures and pure phases are in good agreement with the measurements. This further allows us to test the mixing rules usually employed to predict the properties of the mixed phases from the pure ones. We show, in this regime, that the partial densities mixing rule predicts the pressure of the mixture rather accurately but fails in its prediction of the optical conductivity. To improve this latter prediction, we find that we must invoke an isothermal-isobaric mixture rule to compute the pure phase contributions at the correct densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.