Abstract

Sediment adsorption is one of the main environmental fates of neonicotinoids (NEOs) in aquatic environments. Little information is available on for the adsorption characteristics of NEOs on urban stream sediments. In this study, urban tidal stream sediments were collected to determine the adsorption properties of four selected NEOs. The influence of environmental factors on NEO adsorption was determined by the RSM-CCD method. The NEO adsorption rates on sediments were established by multiple regression equations. As a result, the adsorption of four NEOs onto sediments fitted a linear isotherm model. The adsorption amounts of thiacloprid (THA), clothianidin (CLO), acetamiprid (ACE), and imidacloprid (IMI) were 1.68 to 2.24, 1.71 to 2.89, 1.88 to 3.07, and 2.23 to 3.16mg/kg, respectively. The adsorption processes of four NEOs on urban sediments were favorable. Moreover, adsorption behaviors of NEOs were typical physical adsorption and readily adsorbed onto urban sediments. The adsorption processes of NEOs were exothermic reactions, and their adsorption rates decreased with increasing pH. Flow rates and organic matter contents could promote the adsorption ratios of typical NEOs. Multiple linear regression was used to assess the relationships between the adsorption rates of NEOs and environmental factors. The p-values of the fitting equations of adsorption rates were all less than 0.05. Within the ranges of concentration of the investigated factors, the multiple regression equations were able to reasonably model and predict the sorption of typical NEOs onto urban stream sediments. Therefore, the adsorption rate equations effectively predicted the NEO adsorption performance of urban streams and were helpful for controlling risk assessment of NEOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call