Abstract

In this paper, cement mortar IN200 integrated with solid–solid PlusIce X25 commercial PCM was fully characterized for the first time via experimental tests and numerical simulations. An experimental setup was designed and built to evaluate the thermal performance of the composite. Experimental results confirmed the expected advantages of the PCM-loaded plaster in terms of inner surface temperature, inbound heat flux reduction, and the enhanced damping effect on the average temperature. The experimental results were used to validate and calibrate a finite element model implemented in COMSOL Multiphysics® 5.6. The model was adopted to carry out a parametric analysis assessing the influence of PCM mass fraction, phase transition temperature, and PCM mortar thickness. The composite thickness was the most influential parameter, resulting in an energy saving increase from 3.29% to 72.72% as it was increased from 10 mm to 30 mm. Moreover, the model was used in a set of dynamic simulations, reproducing real Mediterranean climatic conditions to capture the transition process for a long period in buildings. The PCM mortar located on the interior side exhibited the highest reduction in both heat flux and inner surface temperature, representing a simple approach to achieving the best thermal comfort conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.