Abstract
Flow visualization, Particle Image Velocimetry (PIV) and dissolved oxygen charging experiments are carried out in a small-scale cylindrical air-water bubble column at different superficial gas velocities. Void fraction profile, total gas holdup, liquid phase velocity field and volumetric mass transfer coefficient are obtained. Details of each experiment are given, with a new procedure for obtaining a 2D void fraction profile from flow visualization by image processing and time averaging which could provide useful information for CFD model validation. The experimental results are analyzed and compared with simulations where good agreement is found for both local and global flow patterns. The averaged governing equations and constitutive relations used in the simulation are discussed briefly, with emphasis on the proper comparison between simulations and experiments based on the derivation of the two-fluid model. By conducting three sets of experiments related to phase distribution, velocity field and mass transfer in the same apparatus, a validated CFD model for multiphase mass transfer is established and can be used in the future design of a multi-phase reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.