Abstract

A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. We are developing an innovative idea by applying SI system for core injection system in emergency core cooling systems (ECCS) to further improve the safety of nuclear power plants. The passive core injection system (PCIS) driven by high-efficiency SI is a system that, in an accident such as a LOCA (loss of coolant accident), attains discharge pressure higher than the supply steam pressure to inject water into the reactor by operating the SI, by supplying water from a pool in a containment vessel and the steam from a reactor pressure vessel (RPV). The SI, passive equipment, is used to replace large rotating machines such as pumps and motors, eliminating the failure probabilities of such active equipment. When the water and steam supply valves open, the SI-driven PCIS (SI-PCIS) will automatically start to inject water into the core to keep the core covered with water. The SI-PCIS works for the range of steam pressure conditions from atmosphere pressure through high pressures, in which the analytical simulations of SI were carried out based on the plenty amount of experimental data using reduced scale SI. We further simulated and evaluated the core cooling and water injection performance of SI-PCIS in BWR using RETRAN-3D code for the case of small LOCA. A reactor, such as ESBWR, equipped with the passive safety system by gravity-driven cooling system (GDCS) and the depressurization valves (DPVs) should be inevitable to lead to large LOCA even for the case of small LOCA by forcibly opening the DPVs to inject water from the GDCS pool due to that the GDCS water head is up to ∼0.2MPa. On the contrary, our simulation exhibited that SI-PCIS could save the reactors from leading to large LOCA by discharge of the water into a core for the cases of small LOCA or DPV unexpectedly open. In addition, we conducted the analytical simulations of SI, which grew in size for the actual nuclear power plant. A part of this report are fruits of research which is carried out by Tokyo Electric Power Company (TEPCO), Toshiba corporation, and seven universities in Japan, funded from the Ministry of Economy, Trade and Industry (METI) of Japan as the national public research-funded program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.