Abstract

A surface with surface energy gradient was fabricated by using chemical vapor deposition technology with dodecyltrichlorosilane (C 12H 25Cl 3Si), and its property was characterized by sessile drop method and Atomic Force Microscope scanning. Visualization experiments were carried out to investigate the motion behaviors of water and ethylene glycol droplets on horizontal and inclined gradient surfaces. And system free energy transition was analyzed to understand the mechanics of the droplet self-motion. The results show that the height and density of the silane molecules groups determined surface energy distribution on the surface. The liquid droplets were self-propelled to move horizontally or uphill from hydrophobic zone to hydrophilic zone on horizontal and inclined gradient surface. The motion process of the droplet experienced an accelerating stage and a creeping decelerating stage; the velocity and the displacement as well as the creeping frequency were proportional to the droplet size. The velocity of 2 ml water droplet reached 42 mm/s on the horizontal surface and 18 mm/s on the inclined surface, while that for ethylene glycol droplet reached 7 mm/s on the horizontal surface. The droplet motion was resulted from the energy transition among interfacial energy, kinetic energy, gravitational potential energy, and viscous dissipation energy. The interfacial energy released from deformation of the droplet is the main source for the motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.