Abstract

ABSTRACT This work physically simulates the effect of low and high flow rates and filling times of reservoirs and rupture due to overtopping (caused by intense rains) of small homogeneous silty-sand earthfill dams. The experiments seek to verify how input variations impact the formation of the breach and the rupture wave. The results show that different filling times, soil moisture and composition, and degree of compaction affect landfill saturation, failure time, and breach formation. The result confirms that smaller breaches with a higher degree of compaction led to a lower peak rupture flow compared to dams with low degree of compaction. The rupture hydrograph presents a faster descent stage than an exponential hydrograph. Simulations and models based on this law may minimize the effect of the dam-break wave, also impacting water resource decision-making for damage reduction. The results were extrapolated to a real prototype, providing information and a database for the studies of overtopping dam-break waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call