Abstract
Non-amplified femtosecond laser was used to induce multiphoton effects for corneal tissue imaging and for tissue ablation. A non-amplified titanium-sapphire laser was coupled to a laser scanning microscope in order to examine human and porcine cornea. Tissue was subjected to imaging and lesions were created using identical optical pathways at pulse energies below 2 nJ. Cellular components and the extracellular matrix were selectively imaged by applying autofluorescence and second harmonic generation at submicron resolution. Intrastromal linear scanning at higher power resulted in luminescent plasma along the scanning line. Lesion width decreased with increasing tissue depth and increased with increasing laser power at the target. Light microscopy showed intact stromal tissue around the area of the lesion. High-resolution images as well as high precision tissue lesions were created in the cornea using low energy femtosecond laser pulses. Easy switching between tissue imaging and ablation seems to be suitable for diagnostic and therapeutic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.