Abstract

Reducing the temperature rise during turning operation improves the quality of the product and reduces tool wear. Experiments are conducted as per the Design of Experiments (DoE) of Response Surface Methodology (RSM) to predict the temperature rise by varying the cutting parameters such as cutting speed, feed rate and depth of cut. In the present study, the experiment was conducted on Aluminium Al 6061 by coated carbide tool. A second order mathematical model in terms of machining parameters was developed for temperature rise prediction using RSM. This model gives the factor effects of the individual process parameters. Values of Prob> F less than 0.05 indicate model terms are significant. The cutting speed is the most important parameter that cause the temperature of the turning process compared to the other factors such as feed rate and depth of cut. Validation results show good agreement between the actual process output and the predicted temperature rise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call