Abstract

Extra-large liquefied natural gas (LNG) storage tanks are comprised by a steel inner tank and an outer protective tank of prestressed reinforced concrete (PRC), both being very thin. These important lifeline infrastructures are prone to damage and even failure under earthquake during their service life. Convincing numerical simulation, verified by shake table tests, is a feasible tool to quantify the seismic responses and to mitigate the potential damage/failure of LNG storage structures. This work addresses systematically the three-dimensional finite element (FE) modeling, experimental validation and numerical simulations of such structures, with the soil–pile interaction of the foundation, the fluid–structure interaction of the inner tank and damage of the outer tank all properly accounted for. For the sake of computational efficiency with no loss of too much precision, the soil–pile interaction is described by the mass–damper–spring model, and the fluid–structure interaction by the mass–spring model with both the convective and impulsive components accounted for. Moreover, the nonlinear mechanical behavior of concrete is considered by the damaged-plasticity model regularized with the fracture energy. The concrete–steel interaction in PRC is practically dealt with by modifying the constitutive relations of concrete and steel rebars/tendons properly with the equilibrium and compatibility conditions accounted for. The FE modeling strategy is validated against the recently conducted benchmark shaking table test of a scaled extra-large LNG storage structure. The capability in capturing the overall dynamic responses, e.g., the hydrodynamic pressure and structural vibrations under seismic actions, etc., is sufficiently verified. Finally, the dynamic responses and structural reliability of an extra-large LNG storage tank under deterministic and stochastic seismic actions are numerically studied in details.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.