Abstract

The multiaxial warp-knit fabrics of glass fiber or carbon fiber as the structure materials have widely applied to many industries. In this study, in order to combined the advantages of these two fibers, glass fiber and carbon fiber were employed as reinforcement materials in RIMR 135 epoxy resins, and hybrid composites were formed. The tensile behavior of hybrid fiber-reinforced plastics (HFRP) were compared with CFRP and GFRP on the longitudinal orientation . The results suggested that HFRP was high tensile strength and modulus of elasticity. Scanning electron microscopy was used to characterize the morphology of damaged surfaces. The micrographs revealed that CF and GF maintained their own tension behavior in the hybrid composite materials as well in the neat FRP materials. The hybrid effect of HFRP was investigated by the hybrid theory, which was compared to the experimental results. It was confirmed that the tensile behavior of the hybrid composite materials matched the plus hybrid effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call