Abstract

Reactive materials such as aluminum (Al) and polytetrafluoroethylene (Teflon) are used for energy generation applications and specifically in ordnance technologies. With the advent of nanotechnology various nano-scale additives have become incorporated into reactive material formulations with the hope of enhanced performance. An important component to the study of energy generation is an examination of energy transport through a reactant matrix. This study examines an experimental approach to quantifying thermal properties of an Al/Teflon nanocomposite reactant matrix that has been impregnated with carbon additives. Various structures of carbon are investigated and include amorphous nanoscale carbon spheres (nano C), graphene flakes and unaligned multiwalled carbon nanotubes (CNTs). The additives were selected based on their completely different structures with the hypothesis that the structure of the additive will influence the thermal transport properties of the matrix. Results show graphene has the greatest influence on the thermophysical properties. For example, thermal conductivity of the composites containing graphene increased by 98%. Graphene similarly enhanced the thermal diffusivity and specific heat of the Al/Teflon matrix. Conversely, nano C and CNTs decreased the thermal conductivity and thermal diffusivity of the samples significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.