Abstract
Metastases in rat liver were generated experimentally by intraportal injection of colon cancer cells to investigate the effects of cancerous growth on the metabolism of surrounding liver tissue. Maximum activities (capacity) of glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, lactate dehydrogenase, succinate dehydrogenase, alkaline phosphatase, 5'-nucleotidase, xanthine oxidoreductase, purine nucleoside phosphorylase and adenosine triphosphatase have been determined. Two types of metastases were found, a small type surrounded by stroma and a larger type in direct contact with hepatocytes. Both types affected the adjacent tissue in a similar way suggesting that the interactions were not mediated by stroma. High capacity of the degradation pathway of extracellular purines released from dead cells of either tumours or host tissue was found in stroma and sinusoidal cells. Metastases induced both an increase in the number of Kupffer cells and proliferation of hepatocytes. The distribution pattern in the liver lobulus of most enzymes investigated did not change distinctly. However, activity of alkaline phosphatase, succinate dehydrogenase and phosphogluconate dehydrogenase was increased in hepatocytes directly surrounding metastases. These data imply that the overall metabolic zonation in liver lobuli is not dramatically disturbed by the presence of cancer cells despite the fact that various metabolic processes in liver cells are affected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.