Abstract

AbstractCalculating meteoroid masses from photometric observations relies on prior knowledge of the luminous efficiency, a parameter that is not well characterized; reported values vary by several orders of magnitude. We present results from an experimental campaign to determine the luminous efficiency as a function of mass, velocity, and composition. Using a linear electrostatic dust accelerator, iron and aluminum microparticles were accelerated to v > 10 km/s and ablated, and the light production measured. The luminous efficiency of each event was calculated and functional forms fit for each species. For both materials, the luminous efficiency is lowest at low velocities, rises sharply, then falls as velocity increases. However, the exact shape and magnitude of the curve is not consistent between the materials. The difference between the luminous efficiencies for iron and aluminum, particularly at high velocities, indicates that it is not sufficient to use the same luminous efficiency for all compositions and velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.