Abstract

Fibre lasers are known to provide a rich tapestry of operational regimes, which can be attributed to the nonlinear nature of light dynamics in optical fibre at high powers, and the multidimensional system parameter space. Given their inherent complexity, identifying and discerning the underlying physical processes that gives rise to them still remains a formidable challenge. Here, for the first time in experiment, we show how the Nonlinear Fourier Transform (NFT) (see e.g. [1-3] and references therein) can be used as an effective tool for the identification and classification of lasing regimes. The NFT provides a framework for identification of coherent structures (nonlinear multi-soliton modes) embedded into dispersive radiation [2, 3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.