Abstract

Experimentally quantifying entanglement and coherence are extremely important for quantum resource theory. However, because the quantum state tomography requires exponentially growing measurements with the number of qubits, it is hard to quantify entanglement and coherence based on the full information of the experimentally realized multipartite states. Fortunately, other methods have been found to directly measure the fidelity of experimental states without quantum state tomography. Here we present a fidelity-based method to derive experimentally accessible lower bounds for measures of genuine multipartite entanglement and coherence. On the one hand, the method works for genuine multipartite entanglement measures including the convex-roof extended negativity, the concurrence, the G-concurrence, and the geometric measure for genuine multipartite entanglement. On the other hand, the method also delivers observable lower bounds for the convex roof of the $l_{1}$-norm of coherence, the geometric measure of coherence, and the coherence of formation. Furthermore, all the lower bounds are based on the fidelity between the chosen pure state and the target state, and we obtain the lower bounds of several real experimental states as examples of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.