Abstract

The emergence of Zika virus (ZIKV) in the New World has led to more than 200,000 human infections. Perinatal infection can cause severe neurological complications, including fetal and neonatal microcephaly, and in adults there is an association with Guillain-Barré syndrome (GBS). ZIKV is transmitted to humans by Aedes sp. mosquitoes, yet little is known about its enzootic cycle in which transmission is thought to occur between arboreal Aedes sp. mosquitos and non-human primates. In the 1950s and ‘60s, several bat species were shown to be naturally and experimentally susceptible to ZIKV with acute viremia and seroconversion, and some developed neurological disease with viral antigen detected in the brain. Because of ZIKV emergence in the Americas, we sought to determine susceptibility of Jamaican fruit bats (Artibeus jamaicensis), one of the most common bats in the New World. Bats were inoculated with ZIKV PRVABC59 but did not show signs of disease. Bats held to 28 days post-inoculation (PI) had detectable antibody by ELISA and viral RNA was detected by qRT-PCR in the brain, saliva and urine in some of the bats. Immunoreactivity using polyclonal anti-ZIKV antibody was detected in testes, brain, lung and salivary glands plus scrotal skin. Tropism for mononuclear cells, including macrophages/microglia and fibroblasts, was seen in the aforementioned organs in addition to testicular Leydig cells. The virus likely localized to the brain via infection of Iba1+ macrophage/microglial cells. Jamaican fruit bats, therefore, may be a useful animal model for the study of ZIKV infection. This work also raises the possibility that bats may have a role in Zika virus ecology in endemic regions, and that ZIKV may pose a wildlife disease threat to bat populations.

Highlights

  • Zika virus (ZIKV) was first isolated from a sentinel rhesus macaque in Uganda in 1947 and subsequently from Aedes africanus mosquitoes in the same location [1]

  • Captive Jamaican fruit bats were challenged with ZIKV to determine their susceptibility, to assess whether bats may play a role in virus ecology, and if they might serve as an animal model to better understand ZIKV pathophysiology

  • Virus was detected in several organs, including the testes and brains, no overt clinical signs were detected, and substantial viremia or viruria was not evident. These results suggest that Jamaican fruit bats are unlikely to serve as amplification hosts but that ZIKV infection may constitute a wildlife disease threat to bats

Read more

Summary

Introduction

Zika virus (ZIKV) was first isolated from a sentinel rhesus macaque in Uganda in 1947 and subsequently from Aedes africanus mosquitoes in the same location [1]. The first recognized ZIKV epidemic occurred in Yap State, Federated State of Micronesia in 2007. In 2013, a second epidemic occurred in French Polynesia with 28,000 cases reported. During the latter outbreak, the incidence rate of Guillain-Barresyndrome (GBS) increased 20-fold and first indication of a connection between ZIKV infection and GBS was established [5]. ZIKV can cause congenital Zika syndrome (CZS) in naïve populations and is a virus of high concern [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call