Abstract

ABSTRACTClimate warming may change soil nutrient supply and affect the biogeochemical processes, especially the nitrogen (N) cycle in forest ecosystems. However, little is still known about how root N uptake responds to climate warming, and whether forests will experience more intense N limitation under warming. We studied the N absorption and mycorrhizal infection rate in the roots of seedlings of a subalpine coniferous species, Picea asperata Mast., under experimental warming, four years after the seedlings were transplanted in the experimental plots. We found that warming had a significant positive effect on root N absorption, with increases of 151.1%, 99.6%, and 71.9% in May, July, and October of 2011, respectively, when compared to the control treatment. In addition, warming increased the N element content and reduced the C:N ratio of the roots over the warming period. Warming also increased mycorrhizal infections by 30.5%, 12.3%, and 108.1% in May, July, and October of 2011, respectively, when compared to the control treatment. Increases in the N absorption and mycorrhizal infection rates in roots may be an important adjustment to meet plant N demand in the subalpine coniferous forest under warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call