Abstract
The free surface flow in a circular cylinder driven by a rotating bottom disk is studied experimentally using particle image velocimetry. Results are compared with computational results assuming a stress-free surface. A dye visualization study by Spohn et al. [“Observations of vortex breakdown in an open cylindrical container with a rotating bottom,” Exp. Fluids 14, 70 (1993)], as well as several numerical computations, has found a range of different vortex breakdown structures in this flow. We confirm the existence of a transition where the top of the breakdown bubble crosses from the axis to the surface, which has previously only been found numerically. We employ a technique by Brøns et al. [“Topology of vortex breakdown bubbles in a cylinder with rotating bottom and free surface,” J. Fluid Mech. 428, 133 (2001)] to find the corresponding bifurcation curve in the parameter plane, which has hitherto only been used on numerical data. The bifurcation curve located here agrees well with previous numerical simulations. For low values of the Reynolds number we find a regime with vortex breakdown that has not been previously identified. Experiments deviate substantially from computations, indicating the importance of surface effects in this regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.