Abstract

Basing on the measurement of spatial spectra (spectra of wavenumbers), the dispersion characteristics of the first three modes of backward volume spin wave, propagating along the direction of a constant uniform magnetic field in a tangentially magnetized ferrite film, were visualized firstly. The study was carried out by microwave probing of spin waves with subsequent use of spatial Fourier analysis of the complex wave amplitude for a series of frequencies. It was found that experimental spatial spectrum of the backward volume spin wave modes has a fine structure and every m-th mode splits into n closely located satellite modes appearing due to the existence of layers with similar magnetic parameters in ferrite film. It was found that satellites of the first mode of this wave are excited most effectively, while satellites of the third mode - least effectively, and the effectiveness of satellites excitation decreases as the number n increases. It is found that the theoretical dispersion dependencies of the first three modes of the wave coincide well with the experimental dispersion dependencies of the satellite modes that are excited most effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.