Abstract
Bell's inequalities are important to our understanding of quantum foundations and critical to several quantum technologies. A recent work [E. Wolfe and S. F. Yelin, Phys. Rev. A 86, 012123 (2012)] derived three parametrized families of two-particle, two-setting Bell inequalities. These inequalities are important as they theoretically explore a larger volume of allowed quantum correlations over local hidden-variable models than previous results [A. Cabello, Phys. Rev. A 72, 012113 (2005)] by exploiting marginal, or single particle measurements. In this work we subject those predictions to experimental test using nonmaximally entangled photon pairs to optimize the expected violation. We find excellent agreement with the upper bounds predicted by quantum mechanics with violations of the limits imposed by local hidden-variable models as large as almost 30$\ensuremath{\sigma}$ for the optimal parameters and a significant violation over a wide range of parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.