Abstract

This study builds upon previous research that utilised a vibration-based machine learning (VML) approach for diagnosing rotor-related faults in rotating machinery. The original method used artificial neural networks (ANN) to classify rotor-related faults based on optimised vibration parameters from the time and frequency domains. This study expands the application of this vibration-based machine learning approach to include the anti-friction bearing faults in addition to the rotor faults. The earlier suggested vibration-based parameters, both in time and frequency domains, are further revised to accommodate bearing-related defects. The study utilises the measured vibration data from a laboratory-scale rotating test rig with different experimentally simulated faults in the rotor and bearings. The proposed VML model is developed for both rotor and bearing defects at a rotor speed that is above the first critical speed. To gauge the robustness of the proposed VML model, it is further tested at two different rotating speeds, one below the first critical speed and the other above the second critical speed. The paper presents the methodology, the rig and measured vibration data, the optimised parameters, and the findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.