Abstract

The Kaiser effect is a measure of damage developed in rock. It was investigated using 61 core specimens of eight types of rocks under uniaxial cyclic loading. The effects of the delay time between subsequent loading cycles and the holding time on the Kaiser effect were examined in granite specimens. The characteristics of AE occurring during unloading and holding were also studied. The experimental results showed that most of the rocks, with the exception of some iron ores, showed an obvious Kaiser effect before the load was very near the level of the strength. The delay and holding times did not strongly influence the Kaiser effect. Breakdown of the Kaiser effect was expressed by the felicity ratio that may be taken as a measure of the quality of rock. The onset of the continuously increasing AE in the first loading cycle can be taken as a measure of the damage in rock. The mechanism of the Kaiser effect was studied with the aid of a micromechanical model. An expression for the damage surface in the stress space was derived from the model. The theoretical expression was compared with the results of the Kaiser effect tests, which showed a satisfactory consistence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call