Abstract

One of the advantages of optical fiber sensors is their ease of embedment within a structure for non-destructive strain monitoring. In particular, Bragg grating sensors are written directly into an optical fiber hence remaining unobtrusive. In addition, several gratings can be written in series along a single fiber, permitting sensing at discrete points throughout the strain field. However, in regions of strong strain gradients, measuring the strain at discrete points may not be sufficient. One solution is to write a Bragg grating longer than the strain region of interest and use the change in its spectral response to determine the applied strain field as a function of position along the fiber. This paper presents an experimental verification of the response of an embedded optical fiber Bragg grating (OFBG) to applied non-homogeneous strain fields. Optical fiber Bragg grating sensors were embedded in four epoxy specimens of different forms so as to apply known strain functions along the gauge length when the specimen is under uniaxial tension. The complete spectral response of the Bragg gratings was then measured as a function of increasing load. The results are compared with analytical calculations, based on the piecewise-uniform period assumption for chirped gratings. Finally, the use of these spectra is discussed as possible basis functions for the resolution of an arbitrary applied strain distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.