Abstract

This paper deals with the experimental verification of the conventional design of pile caps, ACI 318-14, chapter thirteen. Six reinforced concrete pile cap specimens were designed according to the conventional theory, constructed, tested till failure, and then, compared to the theoretical design ones. The six specimens were divided into two groups; group A in which the spacing between piles was 270 mm, and group B; in which the spacing between piles was 410 mm. Every group contained three pile cap specimens, which were; two pile-cap specimens, three pile-cap specimens and four pile-cap specimens. The two pile-caps were 700 mm in length, 270 mm in height and 240 mm in width, while the three pile-caps were 586 mm in length, 270 mm in height and 700 mm in width. The four pile-caps were 700 mm in length, 270 mm in height and 700 mm in width. It is found that the experimental loads were higher than the design theoretical loads by (180–220)%. That takes place because the conventional method deals with Bernoulli region, while the pile cap is deep. In addition, ACI-318 procedures do not take into consideration the longitudinal reinforcement amount and overemphasize the role of the effective depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call