Abstract

The methane (CH4) - carbon dioxide (CO2) swapping phenomenon in naturally occurring gas hydrates is regarded as an attractive method of CO2 sequestration and CH4 recovery. In this study, a high pressure microdifferential scanning calorimeter (HP μ-DSC) was used to monitor and quantify the CH4 - CO2 replacement in the gas hydrate structure. The HP μ-DSC provided reliable measurements of the hydrate dissociation equilibrium and hydrate heat of dissociation for the pure and mixed gas hydrates. The hydrate dissociation equilibrium data obtained from the endothermic thermograms of the replaced gas hydrates indicate that at least 60% of CH4 is recoverable after reaction with CO2, which is consistent with the result obtained via direct dissociation of the replaced gas hydrates. The heat of dissociation values of the CH4 + CO2 hydrates were between that of the pure CH4 hydrate and that of the pure CO2 hydrate, and the values increased as the CO2 compositions in the hydrate phase increased. By monitoring the heat flows from the HP μ-DSC, it was found that the noticeable dissociation or formation of a gas hydrate was not detected during the CH4 - CO2 replacement process, which indicates that a substantial portion of CH4 hydrate does not dissociate into liquid water or ice and then forms the CH4 + CO2 hydrate. This study provides the first experimental evidence using a DSC to reveal that the conversion of the CH4 hydrate to the CH4 + CO2 hydrate occurs without significant hydrate dissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.