Abstract

Drill bit whirl is a common phenomenon in rotary drilling rigs. It causes severe drill collar damage and borehole enlargement, leading to an irrevocable decrease in drilling efficiency. The majority of the research in this field concentrates on designing new drill bits or placing shock absorbers near the bottom hole assembly to minimize the damage caused by drill bit whirling. However, practically, vibrations in rotary drilling are minimized by tuning the upper rotary table speed or varying the weight on drill bit. This work explores the design and implementation of an adaptive controller to minimize vibrations of drill bits, particularly bit whirl. The developed controller achieves the vibration mitigation by varying the upper rotary speed. Moreover, the developed control law takes into account the vibrational frequencies and critical operating speeds of the drill string, thus also being capable of avoiding resonant vibrations. Experimental results are provided to prove the vibration mitigation capability of the developed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.