Abstract

Background and purposeTo present experimental evidence of lung dose enhancement effects caused by strong inline magnetic fields. Materials and methodsA permanent magnet device was utilised to generate 0.95T–1.2T magnetic fields that encompassed two small lung-equivalent phantoms of density 0.3g/cm3. Small 6MV and 10MV photon beams were incident parallel with the magnetic field direction and Gafchromic EBT3 film was placed inside the lung phantoms, perpendicular to the beam (experiment 1) and parallel to the beam (experiment 2). Monte Carlo simulations of experiment 1 were also performed. ResultsExperiment 1: The 1.2T inline magnetic field induced a 12% (6MV) and 14% (10MV) increase in the dose at the phantom centre. The Monte Carlo modelling matched well (±2%) to the experimentally observed results. Experiment 2: A 0.95T field peaked at the phantom centroid (but not at the phantom entry/exit regions) details a clear dose increase due to the magnetic field of up to 25%. ConclusionsThis experimental work has demonstrated how strong inline magnetic fields act to enhance the dose to lower density mediums such as lung tissue. Clinically, such scenarios will arise in inline MRI-linac systems for treatment of small lung tumours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.