Abstract

Control system design for flexible robotic systems requires special care with regard to the control system design to prevent oscillation in the system's resonant modes. If the resonant frequencies of such a system are known, it is possible to determine a switching command that delivers comparable actuation without exciting these natural modes of vibration. If there is redundancy in actuation, it can be exploited to suppress vibration with a reduced amount of actuator changes in state. Minimum switching discrete switching vibration suppression (MSDSVS) involves choosing a switching function with integer amplitudes and continuously variable switch timings to force the root of the residual oscillation function with respect to frequency to be at a resonance. By minimizing the one norm of the vector of amplitudes, we obtain several desired properties. Such a vibration suppression command is developed for a flexible robotic actuator, and experimental results are presented. The proposed command reduces residual oscillation by 73% (rms) and 74% (largest Fourier component) and represents a 37% energy savings over vibration suppression commands that do not exploit the redundancy in actuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.