Abstract
Alternating phase focusing (APF) is known as a beam focusing method; it was applied to an interdigital H-mode structure and successfully accelerated high current proton beams up to the desired energy for a medical synchrotron injector. A high-current APF linac was achieved by the optimal design of the cavity and the drift tubes themselves, as well as drift tube arrangement based on the co-iteration of a precise electromagnetic field and space charge beam dynamics. A proton injector for a medical accelerator complex was fabricated with the newly developed APF linac. The injector consists of an electron cyclotron resonance ion source, a radio-frequency quadrupole linac and the APF linac. The experimental results showed that over 10 mA proton beams were accelerated up to 7.4 MeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.