Abstract

This paper introduces a modified Chua's system which is a smooth four-dimensional continuous-time autonomous chaotic system with a cubic nonlinearity. Some dynamical behaviors of this 4-D Chua's system are further investigated by means of Poincaré mapping, parameter phase portraits, equilibrium points, bifurcations and calculated Lyapunov exponents. Moreover, using RC-opamp and analog multiplier we describe a simple electronic circuit for hardware implementation of the 4-D Chua's system which differ from previously reported Chua's circuits. Various attractors of experimental results from this chaotic oscillator are in good agreement with theoretical analysis. In particular, based on the approximation theory of fractional-order operator, a relevant analog circuit diagram of this fractional-order modified Chua's system is designed with α = 0.9. Observation results demonstrate that chaos exists indeed in this fractional-order modified Chua's system with an order as low as 3.6. This fractional-order oscillation circuit, for the first time in the literature, realizes high-dimensional Chua's chaotic system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call