Abstract

The short-circuit force induces critical mechanical stress on a transformer. This paper deals with experimental verification and finite element analysis (FEA) for short-circuit force prediction of a 50 kVA dry-type transformer. We modeled high voltage (HV) winding into 20 sections and low voltage (LV) winding into 22 sections as similar as those windings of a model transformer. With this modeling technique, we could calculate electromagnetic forces acting on each section of the windings of a dry-type transformer under short-circuit condition. The magnetic vector potentials, magnetic flux densities, and electromagnetic forces due to short-circuit current are solved by FEA. The electromagnetic forces consisting of radial and axial directions depend both on short-circuit current and leakage flux density. These results were used as input source of sequential finite element method (FEM) to predict the resultant mechanical forces considering the structural characteristics such as stress distributions or deformations of windings, accurately. The obtained resultant mechanical forces in HV winding are compared with those of the experimental ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call