Abstract
Vapor pressure is a relevant quantity that is necessary in order to improve the study of the atmosphere dynamics that take place within astrophysical scenarios. The aim of this study was to obtain the vapor pressure values of the following molecules: C2H4, C2H6, CH3OH, CH4, CO, CO2, H2O, and N2 through experimentation, as well as to determine their empirical relationship with the temperature, applying the results to the persistence of volatiles in trans-Neptunian objects (TNOs) and Kuiper Belt objects (KBOs). The experimental determination was performed by measuring the sublimation rate for each molecule at different temperatures. The Hertz–Knudsen equation was used to obtain the vapor pressures for the aforementioned molecules, taking the necessary considerations into account, and the sublimation rate was measured using a quartz crystal microbalance. In order to check the validity of the methods used, the results obtained for water ice were compared with those of previous studies from the literature. The values obtained for CO, N2, and CH4 are of particular interest in the study of the TNOs' and KBOs' atmosphere composition. The results of this study improve the understanding of the surface and atmospheric composition of objects in the cold scenarios of the solar system, in particular, in KBOs and TNOs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.