Abstract

Shallow water environments pose daunting scenarios for the operation of Unmanned Underwater Vehicles (UUVs), due to significantly larger wave disturbances being present in comparison to a typical deep sea situation. Performing inspection and maintenance tasks at close quarters in these conditions requires reliable control methods robust to external disturbances, allowing accurate position and attitude control, an aspect which classical control methods are often lacking. Improved performance can be achieved through predictive control methods, however, these require accurate and time-efficient estimations of the hydrodynamic forces produced by the immediate ocean environment around the vehicle. Considering this, we present a low-order model for faster-than-real time estimation of the wave-induced hydrodynamic forces acting on a submerged vehicle in various sea state conditions. The model is thoroughly corroborated by experimental tests, performed using a Remotely Operated Vehicle (ROV) situated at shallow depth whilst subjected to realistic sea wave disturbances. Validation between simulations and the collected experimental data showed a maximum normalised mean error deviation of 0.16 and 0.27 for surge and heave forces respectively, and 0.34 for the pitching moment. This empirical evidence demonstrates that accurate predictions of wave-generated forces can be produced through low-order models at a speed suitable for incorporation within predictive control architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.