Abstract

This paper describes the use of computational fluid dynamics for the calculation of the flow resistance through computer-generated models resembling silica monoliths. This study was undertaken to determine the effect of skeleton heterogeneity on the flow resistance and, more precisely, to test the hypothesis that increased skeleton heterogeneity decreases the flow resistance. To evaluate the proposed model, 24 real silica monoliths have been prepared using the same method, covering a wide range of skeleton sizes (2.2 microm < d(s) < 8 microm) and porosities (0.47 < epsilon < 0.66). The permeability of these monoliths was determined by pressure drop measurements, and structural information was obtained by image analysis of laser scanning confocal microscopy-generated 3D images of the skeleton structure. The results indicate that the presence of preferential flow paths due to an increased heterogeneity of the flow through pore space reduces the flow resistance of monolithic media. It is also shown that the pore size is hence a much better suited scaling dimension than the skeleton size to reduce the permeability of monolithic columns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.