Abstract

The P300 speller Machine is among the leading applications of the electroencephalography (EEG)-based brain computer interfaces (BCIs), it is still a benchmark and a persistent challenge for the BCI Community. EEG signal classification represents the key piece of a BCI chain. The minimum distance to Riemannian mean (MDRM) belongs to these classification methods emerging in different BCI applications such as text spelling by thought. Based on a binary classification of each covariance matrix separately, character prediction is done according to the highest score across the whole set of all repetitions. Minimum cumulative distance to Riemannian mean (MCDRM) is a Cumulative variant of the MDRM, perfectly adapted to the P300 Speller Machine. The power of this variant is that prediction takes a more global proceeding involving the n repetitions together. Indeed, thanks to cumulative distances selected row and column are those having the covariance matrices both closer to the Target barycenter and farther from the non-Target one. This variant overcomes the main MDRM limitations as it improves inter-sessional generalization, allows optimal use of all repetitions and reduces considerably the risk of conflict appearing during the selection of rows and columns leading to character prediction. We applied this variant to the raw signals of Data set II-b of Berlin BCI and compared to the published results the MCDRM offers significantly higher results: 97.5% of correct predictions compared to the 96.5% of the competition winner. The MCDRM fits best with the P300 Speller machine, especially when dealing with noisy signals that requires intelligent and optimal usage of the n repetitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call