Abstract

Metabarcoding to determine the species composition and diversity of marine zooplankton communities is a fast-developing field in which the standardization of methods is yet to be fully achieved. The selection of genetic markers and primer choice are particularly important because they substantially influence species detection rates and accuracy. Validation is therefore an important step in the design of metabarcoding protocols. We developed taxon-specific mini-barcode primers for the cytochrome c oxidase subunit I (COI) gene region and used an experimental approach to test species detection rates and primer accuracy of the newly designed primers for prawns, shrimps and crabs and published primers for marine lobsters and fish. Artificially assembled mock communities (with known species ratios) and unsorted coastal tow-net zooplankton samples were sequenced and the detected species were compared with those seeded in mock communities to test detection rates. Taxon-specific primers increased detection rates of target taxa compared with a universal primer set. Primer cocktails (multiple primer sets) significantly increased species detection rates compared with single primer pairs and could detect up to 100% of underrepresented target taxa in mock communities. Taxon-specific primers recovered fewer false-positive or false-negative results than the universal primer. The methods used to design taxon-specific mini-barcodes and the experimental mock community validation protocols shown here can easily be applied to studies on other groups and will allow for a level of standardization among studies undertaken in different ecosystems or geographic locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call