Abstract

An accurate model of Air to Fuel Ratio (AFR) dynamics is critical for high-quality AFR control in SI engines. These modeling and control problems are very sensitive because the dynamics of intake manifold air-fuel flow is severely nonlinear and multivariable. This study focuses on Recurrent Neuro-Fuzzy Network (RNFN) estimation and control of AFR nonlinear dynamics in SI engines. First, a nonlinear autoregressive with exogenous inputs (NARX) model is chosen for modeling the AFR nonlinear dynamics in the fuel injection system. Then, the strategy based on RNFN, is employed to fine-tune the model parameters. A controller is also designed based on inverse model-based method. The objective of control scheme is to keep the AFR constraint conditions by providing the proper fuel injection commands. This strategy is performed on an informative data-set obtained by a real-time in-vehicle experimental test. The effectiveness of the proposed approach is evaluated and validated by the resulting improvement in comparison with ECU performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call