Abstract

Experimental investigation on two rectangular wings with NACA0012 and NACA4415 profiles is performed at different Reynolds numbers to understand their aerodynamic behaviours at a high α regime. In-house developed numerical code VLM3D is validated using this experimental result in predicting the aerodynamic characteristics of a rectangular wing with cambered and symmetrical wing profile. The sectional coefficient of lift ([Formula: see text]) obtained from the numerical approach is used to study the variation in spanwise lift distribution. The lift and moment characteristics obtained from wind tunnel experiments are plotted, and change in the maximum coefficient of lift ([Formula: see text]) and stall angle ( α stall) are studied for both of the wing sections. A significant addition to the novelty of the present experiments is to provide some comparison of the numerical induced drag coefficient, [Formula: see text] with experimentally fitted model coefficients using least square technique. A novel method is used to examine the aerodynamic hysteresis at high angles of attack. The area included in the lift- Re curve loop is a measure of aerodynamic efficiency, and its variation with angle of attack and wing plan forms is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.