Abstract

Both safety and accuracy are of vital importance for surgical operation procedures. An efficient way to avoid the singularity of the surgical robot concerning safety issues is to maximize its manipulability in robot-assisted surgery. The goal of this work was to validate a dynamic neural network optimization method for manipulability optimization control of a 7-degree of freedom (DoF) robot in a surgical operation. Three different paths, a circle, a sinusoid and a spiral were chosen to simulate typical surgical tasks. The dynamic neural network-based manipulability optimization control was implemented on a 7-DoF robot manipulator. During the surgical operation procedures, the manipulability of the robot manipulator and the accuracy of the surgical operation are recorded for performance validation. By comparison, the dynamic neural network-based manipulability optimization control achieved optimized manipulability but with a loss of the accuracy of trajectory tracking (the global error was 1 mm compare to the 0.5 mm error of non-optimized method). The method validated in this work achieved optimized manipulability with a loss of error. Future works should be introduced to improve the accuracy of the surgical operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.