Abstract

The conventional ways to construct an open-to-circular hollow section (CHS) connection are either to directly weld the open section to the CHS column wall or to use local stiffeners (e.g., diaphragms) and gusset plates to connect the two structural components. These construction methods often subject the CHS to severe local distortions and/or require high welding quantities, hindering the real-life application of hollow sections. To overcome such difficulties, this study proposes two types of moment-resisting “passing-through” connection configurations, developed within the European research project “LASTEICON”. These configurations consist of main beams connected to the CHS column via either an I-section or individual steel plates passing through the CHS column. The passing-through system is implemented using laser cut and weld technology and efficiently avoids excessive use of stiffening plates, local damages on the CHS wall and premature flange failures. The proposed configurations are investigated experimentally and numerically under two different load cases in order to characterize their structural behaviour. Finite element models have been developed and calibrated with respect to the experimental force–displacement behaviour of the connections as well as their observed failure modes. The efficiency, benefits, and limitations of the modelling approach were discussed through a detailed comparison study between the experimental and numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.