Abstract

Abstract The replacement of damaged journal bearings in forming machines eventuates in very high personal and material costs as well as long-term downtime. Moreover, new discontinuous forming processes (e.g., press hardening and pendulum operations) have a negative effect on the hydrodynamic pressure built up in the bearing and can lead to failure. Therefore, users and manufacturers of forming presses are looking for ways to improve the safety of this key component. In this paper, the concept of an intelligent hybrid plain bearing (IHPB) that combines hydrodynamic and hydrostatic characteristics, presented by Kurth et al., (2019, “Forming 4.0: Smart Machine Components Applied as a Hybrid Plain Bearing and a Tool Clamping System,” Proc. Manuf., 27, pp. 65–71), is detailed and validated on a test rig. The clearance state of the journal bearing is monitored through eddy current sensors and a controlled hydrostatic support is activated, when this state is evaluated as critical. The results show a strong increase in the load capacity and in the minimal lubrication gap of the IHPB within three series of tested experiments: stationary, nonstationary, and press-typical load cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call