Abstract

An analytical model by Lefèvre and Lallemand [F. Lefèvre, M. Lallemand, Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components, Int. J. Heat Mass Transfer 49 (2006) 1375–1383] that couples a 2D hydrodynamic model for both the liquid and the vapor phases inside a flat micro heat pipe (FMHP) and a 3D thermal model of heat conduction inside the FMHP wall has been modified. It consists of superposing two independent solutions in order to take into account the impact of evaporation or condensation on the equivalent thermal conductivity of the capillary structure. The temperature, pressure and velocity fields can be determined using Fourier solutions. The model has been experimentally validated based on literature data from a grooved FMHP. Two new correlations for the equivalent thermal conductivities during evaporation and condensation inside rectangular micro-grooves have been proposed based on a numerical database. The influence of the saturation temperature and geometry on the maximum heat flux transferred by the system is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.