Abstract
Surrogates development is important to extensively investigate the combustion behavior of fuels. Development of comprehensive surrogates has been focusing on matching chemical and physical properties of their target fuel to mimic its atomization, evaporation, mixing, and auto-ignition behavior. More focus has been given to matching the derived cetane number (DCN) as a measure of the auto-ignition quality. In this investigation, we carried out experimental validation of a three-component surrogate for Sasol-Isoparaffinic Kerosene (IPK) in ignition quality tester (IQT) and in an actual diesel engine. The surrogate fuel is composed of three components (46% iso-cetane, 44% decalin, and 10% n-nonane on a volume basis). The IQT experiments were conducted as per ASTM D6890-10a. The engine experiments were conducted at 1500 rpm, two engine loads, and two injection timings. Analysis of ignition delay (ID), peak pressure, peak rate of heat release (RHR), and other combustion phasing parameters showed a closer match in the IQT than in the diesel engine. Comparison between the surrogate combustion behavior in the diesel engine and IQT revealed that matching the DCN of the surrogate to its respective target fuel did not result in the same negative temperature coefficient (NTC) profile—which led to unmatched combustion characteristics in the high temperature combustion (HTC) regimes, despite the same auto-ignition and low temperature combustion (LTC) profiles. Moreover, a comparison between the combustion behaviors of the two fuels in the IQT is not consistent with the comparison in the diesel engine, which suggests that the surrogate validation in a single-cylinder diesel engine should be part of the surrogate development methodology, particularly for low ignition quality fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.