Abstract

Hot water heat pumps are well suited for demand side management, as the heat pump market faced a rapid growth in the past years with the trend to decentralized domestic hot water use. Sales were accelerated through wants and needs of energy conservation, energy efficiency, and less restrictive rules regarding Legionella. While in literature the model predictive control potential for heat pumps is commonly shown in simulations, the share of experimental studies is relatively low. To this day, experimental studies considering solely domestic hot water use are not available. In this paper, the realistic achievable model predictive control potential of a hot water heat pump is compared to the standard hysteresis control, to provide an experimental proof. We show for the first time, how state-of-the-art approaches (model predictive control, system identification, live state estimation, and demand prediction) can be transferred from electric hot water heaters to hot water heat pumps, combined, and implemented into a real-world hot water heat pump setup. The optimization approach, embedded in a realistic experimental setting, leads to a decrease in electric energy demand and cost per unit electricity by approximately 12% and 14%, respectively. Further, an increase in efficiency by approximately 13% has been achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call