Abstract

A three-dimensional, electrochemical-transport coupled model is applied to a 50 cm2 proton exchange membrane (PEM) fuel cell and validated against the current distribution data experimentally measured earlier. A parallel computational methodology is employed to substantially reduce the computational time and make large-scale calculations involving millions of grid points possible. Simulation results are analyzed and validated against the available experimental data of current distribution under fully humidified conditions for two cathode stoichiometry ratios. The comparisons of simulations and experiments point out a lack of agreement in the current distribution, although the average polarization curves are matched nearly perfectly. The numerical simulations correctly capture the comma-shaped local polarization curves observed in the current distribution experiments. © 2004 The Electrochemical Society. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.