Abstract

Conductive heat transfer in granular material is important in many industrial processes. For dense systems where the materials have low thermal conductivity, much of the heat transfer will occur through interstitial gases. Industry requires flexible and efficient computational methods to capture these phenomena at scale. In this study, a recently proposed particle-based model that includes the contribution of the interstitial gases was validated using an experiment. This model was originally derived from a multi-scale analysis of static, random packings. To test this approach in dense, dynamic systems, the model results were compared to experimental data for glass beads in an indirectly heated rotating drum. Infrared (IR) thermography was used to track the temperature evolution of the glass beads and the drum wall temperature. Discrete element simulations were performed with the experimental wall temperature used as a transient wall boundary condition. Results from the simulation show good agreement with the experimental data both for the bulk average temperature and for the bed profile, demonstrating the model’s ability to capture the gas contribution in dynamic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call