Abstract

A proportional–integral (PI) controller is the most frequently used control technique for adjustable speed-motor drives. The main advantage of a PI controller is its ability to ensure zero steady-state error under low-frequency disturbances and model uncertainties as long as the closed-loop system is stable. However, the transient performances, under a PI regulator, are highly dependent on the machine parameters, the external disturbances, and the input constraints. This brief proposes the design process of a novel PI speed controller that is capable of preserving almost the nominal transient performance under the parameter variation and external disturbances such as the load torque. The controller also suppresses the effect of input saturation that may occur because of the armature current limitation. Simulation and experimental tests are carried out to verify the validity of the proposed design process. The results revealed that the proposed PI controller is effective regarding nominal performance recovery and input constraints handling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.